Joseph E Hummer, PhD, PE, State Traffic Management Engineer, NCDOT with

Michael P Reese, PE, CPM, Congestion Management Regional Engineer, NCDOT James H Dunlap, PE, Congestion Management Regional Engineer, NCDOT Bailey M Harden, Congestion Management Design Engineer, NCDOT

&

Michael H Schrader, PE, Adjunct Faculty, College of Engineering, Wayne State University, Detroit, MI

What is a quasi-couplet?

- Also known as a "Unbalanced Flow Couplet" (UFC)
- Operation of parallel two-way streets as a one-way couplet with unbalanced lane configuration, i.e. one direction gets priority (with both laneage and signalization)

(View "An engineer's guide to Q-couplets, Part 1" @ https://youtu.be/i07r7_ob55o for a 5 minute video introduction to the concept)

Genesis of concept

- Redwood City, CA, first researched use of concept in 1960s
- Springfield, MO, adopted for Jefferson-Campbell corridor prior to 1975
- Springfield, IL, adopted for Washington-Monroe corridor in 1992
- Also examined or implemented by City of Portland, Oregon DOT, Utah DOT, Las Vegas, and San Francisco

- CHALLENGE: Increase capacity of existing 2-way pair while minimizing disruption to the surrounding neighborhood and cost
 - 16 different concepts analyzed using TRANPLAN
 - Three final concepts analyzed: Do nothing; One-way couplet; Quasi-couplet

- Simulation of "Do Nothing" with 40 percent growth
 - Significant queueing along couplet
 - An engineer's guide to Q-couplets, Part 2

- Simulation of "One Way Couplet" with 40 percent growth
 - Queueing on streets perpendicular to couplet
 - An engineer's guide to Q-couplets, Part 3

- Simulation of "Quasi-couplet" with 40 percent growth
 - Minor queuing, if any, on any streets
 - An engineer's guide to Q-couplets, Part 4

Advantages of Quasi-couplet: simplified signal phasing

Can convert multiphase signal timing to two phase –

- (1) maximize green time
- (2) Improve progression
 - (3) Simpler operations
- (4) Overall improved corridor performance
 - (5) Better pedestrian operations

(View "An engineer's guide to Q-couplets, Part 5" @ https://youtu.be/KICqZjw6aU0 & "An engineer's guide to Q-couplets, Part 6" @ https://youtu.be/WXG5xpHM1zE for a comparison between multi-phase and two-phase signals)

Advantages of Quasi-couplet: Advantages of both worlds

- (1) Increased capacity like one-way
 - (2) Maintain access like two-way
- (3) Better signal progression (one-way v two-way)
 - (4) No need for indirect trips
 - (5) No increase in U-turns on cross streets

Quasi-Couplet: Preserving mobility while freeing urban street space Advantages of Quasi-couplet: better use of existing space

- (1) Can create median pedestrian safe-zones
- (2) Can create bike lanes, transit lanes and other multi-modal facilities
- (3) Shared parking/driving lane depending on time of day

Quasi-Couplet: Preserving mobility while freeing urban street space Advantages of Quasi-couplet: better signalization

- (1) Creates bypass lanes so left-turns don't impede through traffic
 - (2) Allows operation of two-phase signals
 - (3) Can use one-way progression scheme

Quasi-Couplet: Preserving mobility while freeing urban street space Asheville: the NC Q-couplet proposal

- OBJECTIVE: Make Asheville more bicycle-friendly with the creation of bicycle lanes
 - SOLUTION: Creation of a Q-couplet out of two parallel two-way facilities to free up pavement space for installation of bicycle lanes

Quasi-Couplet: Preserving mobility while freeing urban street space Asheville: the NC Q-couplet proposal

 ANALYSIS: The Q-couplet is a viable solution to the problem, along with a road diet and dropping a northbound lane on one of the two streets, and is worth a more in-depth study.

Thank you!

Questions?

Michael Schrader, <u>fg5744@wayne.edu</u>, 810-858-2640