

Safety Evaluation of the Flashing Yellow Arrow Treatment

Raghavan Srinivasan, Bo Lan, Daniel Carter, Sarah Smith, & Kari Signor

University of North Carolina Highway Safety Research Center

Acknowledgments

- Research sponsored by FHWA, under <u>Development of Crash Modification Factors</u> (DCMF) Contract
- Roya Amjadi is FHWA Technical Person
- UNC HSRC is subcontractor to VHB
- Data and assistance provided by:
 - Nevada DOT
 - North Carolina DOT
 - City of Norman, Oklahoma
 - Oklahoma DOT
 - City of Edmond, Oklahoma
 - Oregon DOT

Conversion to Flashing Yellow Arrow (FYA)

Background

- Past studies showed decrease in crashes after FYA (unless converted from protected left turn)
- Most studies used only one state
- NCHRP 17-35 used multiple states but only had 32 sites which had not been protected before FYA

Objective

- Measure overall safety effect of FYA conversion through an before-after empirical Bayes study
- Use large group of converted signals from multiple states
- Develop CMFs for:
 - Total intersection crashes
 - Intersection Injury and fatal crashes
 - Intersection Rear End Crashes
 - Intersection Angle Crashes
 - Intersection Left Turn Crashes
 - Intersection Left Turn with Opposing Through Crashes (LTOT)

Data

- Oklahoma
- Oregon
- Nevada
- North Carolina

Oklahoma

- City of Norman conducted a "blanket" installation of FYA from 2011 to 2013
- All signalized intersections with exclusive left turn lanes
- Most were 5-section protectedpermissive signal heads to 4-section FYA heads

Source: Oklahoma State Travel Map 2016

 Reference/comparison group had to be identified from another similar city (Edmond)

Oregon

- Oregon DOT has been installing FYA statewide for years (early adopter)
- Preconversion mix of protected-permissive (majority), permissive, and protected
- Almost all FYA are 4-section head
- Reference/comparison group identified from statewide signal inventory

Source: ESRI

Nevada

- Statewide installations of FYA from 2011 to 2013
- All were 5-section protectedpermissive signal head to a 4-section FYA head
- Early installations were high crash locations; later ones more systemic

Source: ESRI

North Carolina

- NCDOT provided data from their evaluation of FYA
- Reference/comparison sites identified from lists of future
 FYA installations and very recent FYA installations

Source: NCDOT

 Preconversion mix of protected-permissive (majority), permissive, and protected

Treatment Categories

Category	# Sites
Traditional PPLT to FYA PPLT on one road (3-leg)	40
Traditional PPLT to FYA PPLT on one road (4-leg)	136
Traditional PPLT to FYA PPLT on both roads (4-leg)	64
Permissive <u>or</u> traditional PPLT to FYA permissive on one road (4-leg)	25
Permissive to FYA permissive on one road (4-leg)	12
At least one protected approach to FYA PPLT (4-leg)	18
At least one protected approach to FYA PPLT with time of day changes (4-leg)	12

Note: 307 treated sites and 408 Reference/Comparison Sites from the 4 States

Safety Performance Functions (SPFs)

- Separate SPFs by State by Crash Type
 - AADT (Major and Minor)
 - Number of Legs
 - Left turn phasing (maximum left turn protection)
 - Number of through lanes on the major road
 - Presence/absence of median on the major road
 - Number of approaches with left turn lanes

SPF Form:

$$Y = \exp\left(a_0 + a_1 X_1 + a_2 X_2 + \cdots + a_n X_n\right)$$

Y = predicted number of crashesX's are site characteristicsa's are coefficients

CMF Results – Conversions from Protected/Permissive and Permissive

Treatment Category	Total	KABC	LT	LTOT
Traditional PPLT to FYA PPLT on one road (3-leg)	0.85	0.79	0.80	0.85
Traditional PPLT to FYA PPLT on one road (4-leg)	0.89	0.80	0.75	0.62
Traditional PPLT to FYA PPLT on both roads (4-leg)	0.82	0.78	0.62	0.51
Permissive or traditional PPLT to FYA permissive on one road (4-leg)	1.00	0.81	0.73	0.73
Permissive to FYA permissive on one road (4-leg)	0.92	0.79	0.61	0.55

Note: CMFs in bold statistically different from 1.0 at the 0.05 significance level

CMF Results – Conversions from Protected

Treatment Category	Total	KABC	LT	LTOT
At least one protected approach to FYA PPLT (4-leg)	1.05	1.01	1.55	1.91
At least one protected approach to FYA PPLT with time of day changes (4-leg)	0.97	1.09	1.27	1.15

Note: CMFs in **bold statistically different from 1.0 at the 0.05 significance level**

CMF by State for Traditional PPLT to FYA PPLT on one road (4-leg)

State	Total	KABC	LT	LTOT
Oklahoma	1.13	0.92	0.80	0.73
Oregon	0.72	0.71	0.58	0.58
Nevada	0.96	0.94	1.18	n/a
North Carolina	0.89	0.77	0.63	0.61

Note: CMFs in bold statistically different from 1.0 at the 0.05 significance level

Economic Analysis

- Benefit
 - Crash rates from study sites
 - Crash costs from USDOT
- Cost
 - Oklahoma and Oregon provided cost information; Illinois DOT evaluation report also contained cost information
 - Assumed cost was \$6,000 per approach leg (conservative)
 - Service life assumed to be 10 years
 - Assumed no additional annual maintenance cost compared to the previous signal head

Crash Modification Function for LTOT crashes in Category 2

- Traditional PPLT to FYA PPLT on one road (4leg)
- $CMF = 0.694 \times (Exp \ bef \ per \ year)^{-0.2626}$

Exp bef per year = the EB expected LTOT crashes per year at the intersection level in the before period (i.e., before the FYA was implemented).

Economic Analysis

Treatment Category	B/C ratio
Traditional PPLT to FYA PPLT on one road (3-leg)	84:1
Traditional PPLT to FYA PPLT on one road (4-leg)	69:1
Traditional PPLT to FYA PPLT on both roads (4-leg)	56:1
Permissive or traditional PPLT to FYA permissive on one road (4-leg)	144:1
Permissive to FYA permissive on one road (4-leg)	89:1

Limitations

Left turn volumes were not available

- Evaluation focused on intersection level crashes
 - Could not reliably determine approach level crashes from coded crash reports

Questions?

