Impact of Superstreet Operations on Pedestrians and Bicyclists

Anne Holzem, Chris Cunningham, Sarah W. O'Brien, Joseph E. Hummer, Bastian Schroeder, and Katy Salamati

May 22, 2017

Research Objective:

To modify current superstreet design and operations in North Carolina to better serve pedestrians and bicyclists.

US-17 in Leland, NC Courtesy of NCDOT

Crossing Alternatives

- Pedestrian
 - Diagonal Cross
 - Median Cross
 - Two Stage Barnes
 Dance Cross
 - Midblock Cross

- Bicycle
 - Bicycle U-Turn Cross
 - Bicycle Direct Cross
 - Midblock Cross

Diagonal Cross

Two Stage - Barnes Dance Cross

Midblock Cross

Bike U-Turn Cross

8

RE

Field Data

Туре	Number of Observations	Ave (fps)	25 th % (fps)	75 th % (fps)
Pedestrian (walk)	1,277 (91%)	5.0	4.3	5.5
Pedestrian (runner)	121 (9%)	9.6	8.4	11.0
Bicyclist	118	15.6	12.0	18.9

Simulations Routes

Simulations Setup

- Cycle Lengths
 90 second
 - 180 second

- Midblock locations
 - 600'
 - 800'

- Splits
 - 75/25
 - 60/40

- Signal Timing (arrival of platoons)
 - Simultaneous
 - Offset

Simulations Setup

- (4) Pedestrian Types
 - Slow Compliant
 - Fast Compliant
 - Slow Non-Compliant
 - Fast Non-Compliant
- (1) Bicycle Type – All compliant

Simulations Outputs

• Average # of Stops per route

• Average Stopped Delay per route (sec)

• Average Travel Time per route (sec)

Results Pedestrians

Geometry	Mean Stopped Delay (sec)	Mean Number of Stops
Two Stage -Barnes Dance Cross	92.1	1.3
Diagonal Cross	120	1.8
Median Cross	147	1.9
Midblock Cross	111	1.5

Results Pedestrians

Geometry	Mean Travel Time (sec)	Free Flow Travel Time (sec)	Total Delay (sec)
Two Stage -Barnes Dance Cross	422	320	102
Diagonal Cross	465	333	132
Median Cross	487	327	160
Midblock Cross	479	363	116

Results Bicycles

Geometry	Mean Stopped Delay (sec)	Mean Number of Stops	
Bicycle U-Turn Cross	336	14	
Bicycle Direct Cross	133	4.8	
Bicycle Midblock Cross	183	7.0	
Vehicle U-Turn	98	5.0	

Results Bicycles

Geometry	Mean Travel Time (sec)	Free Flow Travel Time (sec)	Total Delay (sec)
Bicycle U-Turn Cross	542	139	403
Bicycle Direct Cross	328	118	210
Bicycle Midblock Cross	428	146	282
Vehicle U-Turn	564	144	420

Conclusions Pedestrians

- Barnes Dance cross produced the lowest MOEs
- Factors that contributed to lower travel times for all geometries:
 - Offset signal design
 - 90 second cycle length
 - 60/40 signal split

Conclusions Bicyclists

- Bicycle Direct cross: lowest average number of stops and lowest average travel time
- Vehicle U-Turn: lowest stopped delay
- Factors that contributed to lower travel times:
 - Offset signal design
 - 90 second cycle length
 - 75/25 signal split
 - 800' midblock locations (for the U-turn options*)

Thank you!

Sarah O'Brien Bicycle and Pedestrian Program Manager skworth@ncsu.edu

