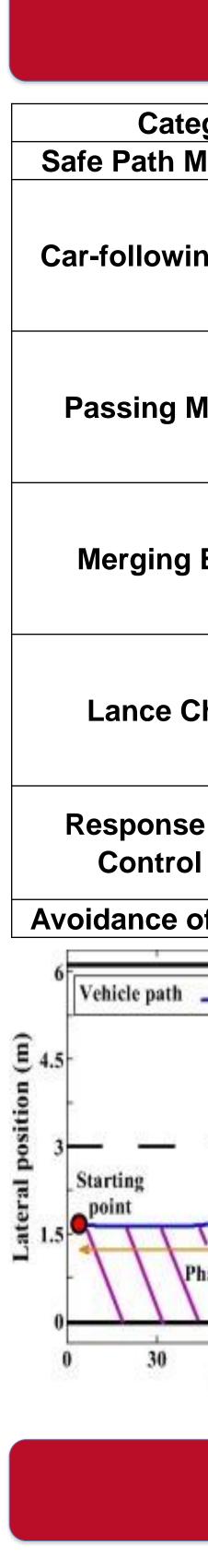


Use of Driving Simulators to Investigate Driving Behavior Ananna Ahmed and John Sangster - University of Nebraska, Lincoln

Background

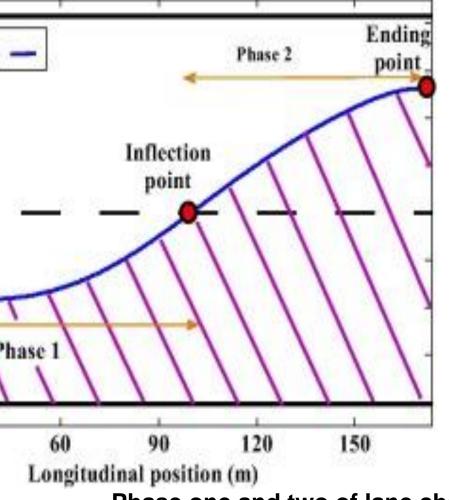

Driving is inherently risky, and is an inescapable daily task for the majority of adults. A 2014 FHWA survey indicates that there are 214 million licensed in the United States. [1] A great deal of the risk comes from how drivers perceive and react to different phenomenon on the road, broadly known as **Driving Behavior**. Attempts to understand these behaviors and model them with equations and are ongoing by transportation measures researchers and officials. This study contributes to categorizing potential driving behaviors of concern, and how these behaviors can be parameterized for study.

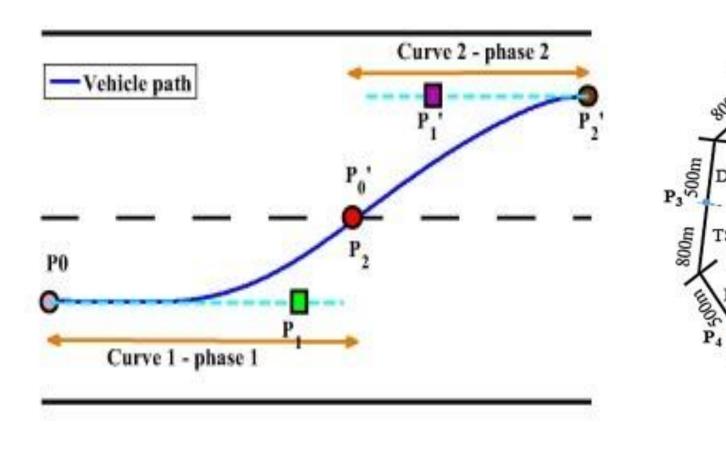
Why Driving Simulator?

- Driving simulator based studies are relatively less expensive than field-test based studies
- Test environment is safe
- Additional visual or vestibular cues can be added according to experiment design to study specific behaviors
- Studying human factors using driving simulator has gained popularity and is validated by several researches[2]
- Availability of high fidelity driving simulators

Control

Category	Parameter in Simulator	Additional Device
Vehicle Control	Visual Behavior Tracking [3] Braking Behavior [4]	Eye Tracking Device
Steering Control	Reaction time to initiate action [5] Steering Angle Spectrum [6]	 Steering Sensor
Speed Control	Speed/Mean speed data [7]	
Steering Angle	Acceleration Brake Gea	ar


U d
Trip
Route

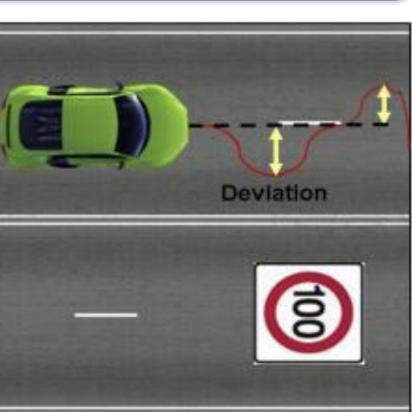

Measuring Steering Angle and Acceleration Throttle by Oliver and Pentland [6]

Min White the

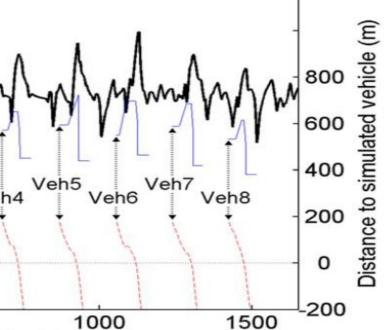
Guidance

	1			
tegory	Parameter in Simulator		t_ti	Center of
Maintenance	Lateral positioning[8]		Lane	lane position
ving Behavior	Headway over time	20		
	Gas to brake pedal application ratio [9]	Road	position	
	Reaction to existing traffic	1 2 2 2 3 2 4	†	
	Use of directional indicators [10]	position		
	Trajectory of passed-passing-opposing	3		
Maneuvers	vehicles			
	Subjective evaluation or rating [11]			
	Speed-acceleration-headway data [12]			
	Vehicle trajectory mapping [13]		M 140	easure of lane kee
	Before-after speed			Driver 7
g Behavior	Movement time			Driver 7
	Accepted gap time [14]	4	100- E	marin
Changing	Position vector of vehicle [15]	t (km	100 made	
	Longitudinal and lateral acceleration	hear	60-	Veh1
	Headway	0	40	Veh2 Veh4
	Time taken to start action [16]		20	
se to Traffic ol Device	Speed variation		0	
	Point location of first action in closed loop			500 Tir
	Variance in acceleration [17]	Measu	ring S	peed and Headwa
of Pedestrian	Steering rotation time and behavior [18]			

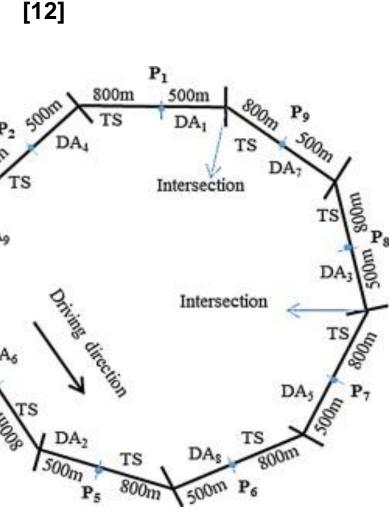
A closed-loop route example used by Zhao et. al 2015 [17]


Phase one and two of lane changing by Tehran et al. [15]

Navigation


ategory	Parameter in Simulator			
Planning	Visual and auditory cues Interview and survey [19]			
Following	Following predesigned route No. of abrupt movement [20]			

Simulator Sickness


Simulator sickness (SS) is a concern for simulator research studies. Due to parallax and based binocular gap between real driving and simulator, motion sickness is inevitable. In rare occasions drivers report headache, dry mouth, dizziness and disorientation. Including simulator sickness in experimental design is important for validation of simulator based studies. Typically, simulator sickness issues are resolved by practice run before actual experiment and experience is gathered by survey.

eeping by Azizan et al. [8]

ime (sec) vay over time by Bar-Gera and Shiner

State of the Practice Equipment

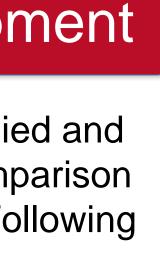
Four simulator hardware options were studied and compared for this publication. Detailed comparison can be found in conference proceedings. Following are the four simulators discussed.

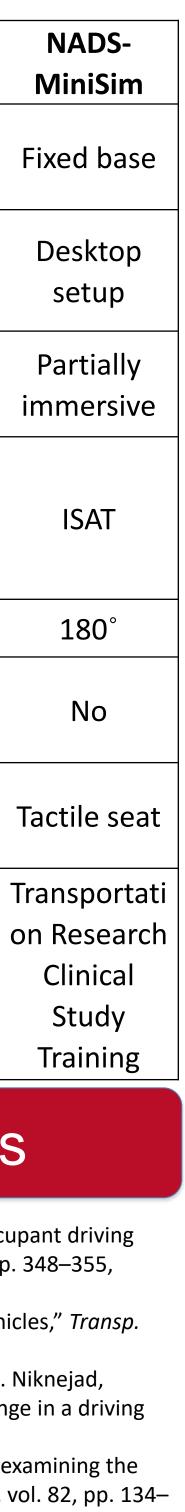
- Virage Simulator Model VS300 and VS500
- STISIM Drive
- Realtime Technologies Inc. Simulator
- MiniSim Driving Simulator •

Features	Virage	STISIM	RTI
Base	Fixed base	Fixed base	Low fidelity 3 or 6 DOF
Arrangement	Actual quarter Car	Actual half or quarter Car	Actual quarter Car
Immersion Standard	Fully immersive	Fully immersive	Partially immersive
Scenario Control	Possible with the help of producer	SDL Tool	SimVista
Field of View	180°	135°	180°
Blind Spot Locator	Yes	No	No
Motion Sensitivity	Vibration Sensor	No	Steering overload
Proven Validity	Training	Clinical Study Human Factor	None found

Poster Figure Citations

[8] A. Azizan, M. Fard, M. F. Azari, and R. Jazar, "Effects of vibration on occupant driving performance under simulated driving conditions," Appl. Ergon., vol. 60, pp. 348–355, 2017.


[12] H. Bar-Gera and D. Shinar, "The tendency of drivers to pass other vehicles," Transp. *Res. Part F Traffic Psychol. Behav.*, vol. 8, no. 6, pp. 429–439, 2005. [15] D. Sadeghi Tehran, A. Nahvi, M. Hajirasouli, H. Naseri, K. Lotfi, and M. Niknejad


"Effects of stimulant and opiate drugs on driver behavior during lane change in a driving simulator," Travel Behav. Soc., vol. 4, pp. 69–78, 2016.

[17] X. Zhao, J. Li, H. Ding, G. Zhang, and J. Rong, "A generic approach for examining the effectiveness of traffic control devices in school zones," Accid. Anal. Prev., vol. 82, pp. 134-142, 2015.

Reference

A. Ahmed and J. Sangster, "Use of Driving Simulators to Investigate Driving Behavior: Literature Review and Design of Experiments," in 5th Urban Streets Symposium, 2017.

Nebraska Lincoln